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Dogs play an important role in toxicology because of their
importance as a large animal, pre-clinical model for eva-
luating potential toxicity in human drug development
including the effects of investigational drugs on the immune
system. The purpose of this paper is to review the deve-
lopment of the canine immune system during the fetal,
neonatal and postnatal periods and to compare it with that
of the human immune system. Unlike rodents, the develop-

ment of the canine immune system shares many similar-
ities to that of the human. In both dogs and humans, the
immune system, including the mucosal immune system, is
fully developed before birth although the maturity of the
immune response may continue into the postnatal period.
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Introduction

The dog has long been an important research model
in two major areas. Dogs play an important role in the
investigation of new drugs since they are one of
the major models used in toxicity trials, including the
effects of investigational drugs on the immune sys-
tem. Historically, the dog has been a valuable model
for bone marrow transplantation, with many of the
advances made in the dog being directly transfer-
able to human clinical bone marrow transplantation
protocols. More recently, the dog has become an
important model in the study of primary immunode-
ficiency disease. For example, the determination of
the immunologic defect in X-linked severe combined
immunodeficient (XSCID) dogs helped lead to the
discovery of the gene responsible for both human
and canine XSCID.

Since dogs are relatively outbred, share the same
environment as humans, and develop many of the
same immunologic diseases, they represent an ideal
large animal model in which to study the immunology
and pathogenesis of these diseases in a compressed
period of time. Figure 1 illustrates the comparison of
biologic aging between dogs and humans.1 In the past,
the major limitation of the use of the dog as an
experimental model in immunologic research has

been the paucity of immunologic reagents available
to dissect the canine immune system. Over the past
few years, great strides have been made in the devel-
opment of these reagents.

Ontogeny of the immune system

The dog is a multiparous animal with a gestation
period of 60±63 days. The following is a brief
description of the fetal development of lymphoid
organs in the dog.2 ± 8 Between days 27 and 28 of
gestation, the primordia of the spleen and thymus are
evident. On day 35, the thymic primordium descends
from the cervical region into the anterior thoracic
cavity. At this time, it is composed of epithelial
lobules and mesenchymal stroma only. Between days
35 and 40, the thymus becomes actively lympho-
poietic and shows corticomedullary demarcation.
Hassall’s corpuscles appear between days 38 and
40. By day 45, the thymic microenvironment has
assumed its normal postnatal histologic appearance.
Lymphocytic infiltration of lymph nodes and the
spleen with evidence of T cell-dependent zones is
evident between days 45 and 52. During this same
time, the bone marrow becomes heavily cellular and
contains abundant hematopoietic stem cells. Peyer’s
patches are present in the small intestine between
days 45 and 55. By days 60±63, prominent post-
capillary venules have developed in the peripheral
lymphoid tissues. Germinal centers and plasma cells
appear in the spleen and lymph nodes shortly after
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birth. The thymus undergoes rapid postnatal growth
and reaches maximum size at one±two months of age
as percentage of body weight, and at six months of
age in absolute terms.

Fetal and postnatal thympoiesis has only recently
been evaluated in the dog (Refs. [8,9], Felsburg et al.,
manuscript in preparation). Figure 2 illustrates that
normal thympoiesis is occurring by day 45 of gestation
with the distribution of thymocyte subsets virtually
identical to that of the postnatal thymus. The only
major difference between the fetal and postnatal thy-
mus is its cellularity (Figure 3).

Our knowledge of the ontogeny of immune re-
sponses in the dog is limited and is summarized in
Table 1.8 ± 14 Although fetal dogs are capable of res-
ponding to various antigens, it is generally considered
that dogs become immunologically mature close to, or
at, birth. The fact that neonatal dogs possess a func-
tional humoral immune system was demonstrated by
Jacoby et al.10 In this study, colostrum-deprived,
gnotobiotic puppies were vaccinated within the first

24 hours of birth with the T cell-dependent antigen,
bacteriophage fX174. All the neonatal puppies devel-
oped a primary and secondary specific antibody
response following immunization. The only differ-
ence between the fetal, neonatal, and adult groups of
dogs was the magnitude of the response (Figure 4).
These studies documented that neonatal dogs possess
a functional B cell and T cell system at birth. Dogs
immunized intranasally with a modified-live vaccine
within the first week of life also develop a protective
immune response, even in the presence of maternal
antibody documenting the competence of the mucosal
immune system.

Needless to say, the ontogeny of the human im-
mune system is even more limited than the dog.
Lobach and Haynes15 have described the ontogeny
of the human thymus during fetal development. The
human thymus develops from the third pharyngeal
pouch giving rise to the endodermal-derived thymic
cortical epithelium and the third pharyngeal cleft
giving rise to the thymic medullary epithelium. At
seven weeks of gestation, the ectoderm and endoderm
fuse to form an epithelial thymus. Between seven
and eight weeks, prothymocytes from the fetal liver
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Figure 1 Comparison of biologic aging in dogs and humans
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Figure 2 Thymocyte subsets in the canine fetal and postnatal
thymus (fd=fetal day; DN=CD4¡8¡ thymocytes; DP=CD4+8+

thymocytes; 4+=CD4+8¡ thymocytes; 8+=CD4¡8+thymocytes)
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Figure 3 Thymocyte cellularity in the canine fetal and postnatal
thymus (fd=fetal day)

Table 1 Functional development of the immune system in fetal
dogs

Day of gestation Immunologic function

38±43 Appearance of CFU-g/m in fetal liver.
40 Respond to immunization

with fX174.
45 Lymphocytes (spleen and lymph

nodes) respond to PHA.
48 Respond to immunization with RBC.
50 Fetal thymocytes respond to PHA.

Respond to immunization with
Brucella canis.

Birth Antibody response to KLH.
Normal skin allograft rejection.
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seed the thymus and thympoiesis begins. By 16±20
weeks, the development of the thymus is complete.

The seeding of the immune microenvironment
during human fetal development was recently re-
viewed.16,17 Hematopoiesis begins at three weeks of
gestation in the chorion stalk yolk sac. At five weeks,
the fetal liver is seeded with hematopoietic stem cells
from the yolk sac and hematopoiesis begins in the
fetal liver around six weeks of gestation. By eight
weeks, progenitor cells seed the thymus, bone mar-
row, spleen and lymph nodes. Mature T cells seed
the peripheral lymphoid organs between 11 and 12
weeks of gestation, and by 14±18 weeks, the spleen
and lymph nodes contain the full complement of
B and T cells. Because of the absence of antigenic
stimulation in the fetus, there are no secondary
follicles in the fetal spleen or lymph node. Peyer’s
patches are functionally mature by 20 weeks of
gestation, but are quiescent until birth. Thymocytes
respond to mitogenic stimulation at 12 weeks of

gestation, and splenic T cells respond between 14
and 16 weeks.18

Neonatal and postnatal immune system
development

In contrast to human neonates who receive the
majority of their maternal antibody through placental
transfer in utero, newborn puppies are essentially
devoid of maternal antibody when they are born.8

The placentation in the dog differs from the hemo-
chorial placenta of humans in which the blood of the
mother is in direct contact with the trophoblast
permitting direct entry of maternal IgG into the fetal
bloodstream. Dogs have an endotheliochorial pla-
centa in which four structures separate the maternal
and fetal blood ± the endothelium of the uterine
vessels and the chorion, mesenchyme (connective
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Figure 4 Antibody titers following immunization of fetal, neo-
natal and adult dogs with bacteriophage fX174 (fd=fetal day)
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Figure 5 Age-related serum immunoglobulin concentrations in
dogs
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Figure 6 Age-related proportions of peripheral blood lymphocyte
subsets
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Figure 7 Age-related in vitro proliferative response of canine
peripheral blood lymphocytes following stimulation with PHA
(CPM=counts per minute)
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tissue), and the endothelium of the fetal tissues.
These four layers of tissue between the maternal
and fetal circulation in the dog limit the in utero

transfer of maternal IgG to the fetus. Thus, only 5±
10% of maternal antibody in the dog is obtained in
utero through the placenta with the majority being
obtained through colostrum during the first 24 hours
after birth. The levels of serum IgG in newborn
puppies that receive colostrum approach those levels
found in adults. Since the half-life of maternal anti-
body in the dog is approximately 8.4 days, the average
protection from maternal antibody in the neonate is
between eight and 16 weeks.

Neonatal and postnatal immunoglobulin levels are
dependent upon a variety of factors including age and
environmental factors (infections, and others) with
age being the most important. Depending upon
whether the puppy received colostrum, IgG levels
will be within the normal adult range in the neonatal
period (Ref. [8], Felsburg, unpublished data). Follow-
ing the decline of maternal IgG, there is a gradual
increase in all three immunoglobulin classes (Figure
5). Normal adult levels of serum IgM occurs by two±
three months of age. Serum IgG concentrations ap-
proach normal adult levels between six and nine
months of age. As in other species, the synthesis of
serum IgA lags behind the other isotypes and does

not reach adult levels until approximately one year of
age. This age-related development of serum immuno-
globulins is similar to that observed in humans.19

The phenotype of the lymphocyte subpopula-
tions in neonatal dogs differs significantly from that
of adult dogs as illustrated in Figure 6 (Refs. [8,9],
Felsburg et al., unpublished data). During the first 16
weeks, there is a gradual decline in the proportion of
peripheral B cells and an increase in the proportion
of peripheral T cells to normal adult values. There-
after, the proportion of B and T cells remains fairly
constant throughout the life of the dog. Other age-
related differences in lymphocyte subsets include
considerably higher proportions of CD4+ T cells
during the first six months resulting in high CD4:CD8
ratios. After 10±12 months of age, the proportion
of CD4+ cells declines and the proportion of CD8+

T cells increases to normal adult levels with normal
CD4:CD8 ratios of 1:5±2.0. Lastly, during the neonatal
and immediate postnatal period, the vast majority,
greater than 90%, of the peripheral T cells are
CD45RA+ (naõÈve) T cells (Ref. [20], Felsburg et al.,
unpublished data). After four months of age, the
relative frequency of CD45RA+ T cells declines such
that only 40±50% of the peripheral T cells in adults
are CD45RA+ . Very similar age-related changes are
observed in healthy children and adults.21,22

Although the proportion of peripheral T cells in
the neonatal dog is significantly lower than that in the
adult, they are functionally competent as illustrated
in Figure 7 by their ability to proliferate normally in
response to mitogenic stimulation through the T cell
receptor.

As discussed previously, dogs possess functionally
mature Peyer’s patches at the time of birth.7,23,24

Neonatal dogs also possess intraepithelial lympho-
cytes (IELs) with a phenotype similar to that of adult
dogs (Figure 8). The proportion of IELs and their
phenotype is similar to that of human IELs including
the predominance of CD8ab+ T cells in contrast
to the predominance of CD8aa+ T cells in rodents
(Refs. [25,26], Felsburg et al., unpublished data). As
in the human, TCRab+ T cells predominate in the
skin of dogs in contrast to the predominance of
TCRg d+ T cells in rodents.27,28
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Figure 8 Proportion of canine IELs and various subsets of the IEL
population

Table 2 Comparison of canine and human X-linked severe combine immunodeficieny with gc-deficient mice

Human Dog Mouse

B cells Normal, no class-switching Normal, no class-switching Absent
T cells Low to absent Low to absent Low to absent
NK cells Possible Possible Absent
Thymus

Cellularity ?? 1/300 Normal 1/25 Normal
Subsets ?? DN DP Normal

Postnatal T cell
development

Yes ( Normal) Yes (25% Normal) Yes (350% Normal)
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Similarity to the immune system

The data presented in previous sections show that
dogs, unlike rodents, but similar to humans, seem to
be immunologically competent at, or before, birth.
Like humans, the maturation of the immune re-
sponse most likely continues postnatally due to the
naivete of the neonatal immune system. Many of
the descriptive parameters of the immune system
in the dog also appear to be more similar to humans
than rodents.

Further similarities of the canine immune system to
the human system comes from studies involving
XSCID that is caused by mutations in the common
gamma chain (g c).29 The g c is a common component
of the receptors for IL-2, IL-4, IL-7, IL-9, IL-15 and

IL-21,29,30 cytokines that play an important role in lym-
phocyte development and function. Table 2 compares
the effects of a mutated g c on human, canine and mu-
rine lymphocyte development and function.9,20,31 ± 43

It appears that species-specific differences exist con-
cerning the role of the g c and its associated cytokines
on lymphocyte development and function between
the mouse and humans and dogs with the dog being
virtually identical to the human.
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